
  
Abstract—  The vortex structures behind the transverse jet in 
a supersonic flow for moderate to high pressure ratios are 
studied. Numerical simulation is performed using the three-
dimensional Favre-averaged Navier–Stokes equations 
coupled by the   turbulence model which are solved by the 
algorithm based on the high-order non-oscillatory (ENO) 
scheme. The simulations correctly captured primary vortices: 
the well-known two counter-rotating vortices, the primary 
upstream vortex and the secondary upstream vortex, the 
horseshoe vortex, the pair of vortex in a separation region, 
and one pair of vortices appeared due to the interaction of the 
jet passing through the Mach disk, two pairs of vortices 
formed due to an overflow above the jet.   The additional two 
vortices are found localized near the wall in the region 
behind the jet. 
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I. INTRODUCTION 

The high-speed jets in the main flow (JIC) have many 

applications, for example, the efficient mixing of fuel and air 
is critical for the supersonic combustion. Also as a result of 
the interaction of the supersonic jet with transverse free flow, 
the flow changes its orientation downstream, thus can 
interact with aerodynamic surfaces. This physics phenomena 
is used in steering of the air vehicles.  

The transverse jet in the supersonic flow has been 
extensively studied both experimentally [1-4] and 
theoretically [5-23].  In the works of [1-4] generalization of 
experimental results of the cross injection of sound jets in a 
supersonic flow is submitted for the various forms of orifices 
and wide regimes of  the jet to cross-flow pressure ratio.  The 
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result of these works is the schematic representation of the 
flow structures. In accordance to this in Fig. 1a the flow 
physics is illustrated, where the bow shock wave is the curve 
(1), the separation shock wave - curve (2), the λ - shaped 
system of shock waves with two triple points corresponding 
to the exhaust of the significantly underexpanded jet - curve 
(3) and the vortices ahead of the jet are indicated by the 
curves (4) and (5).   

The numerical simulation  performed in [5-10,12-
13,15,19-23] using  the Reynolds averaged equations and  
the two parametric turbulence model such as k-ε, k-ω models 
have shown some success in understanding the mechanics of 
the supersonic cross-flows.  This approach numerically 
confirmed the flow structure presented in the experiments [1-
4]   for low and moderate numbers of the pressure ratio [5-7, 
12-13,15,19-20].  For example, Erdema and Kontis [12] 
proposed the numerical model closed by the κ−ω SST 
turbulence model for the transverse jet injection into the 
supersonic flow with jet to free stream pressure ratios from 
8.79 to 63.61. It has been revealed that with increase of the 
jet pressure ratio, cross-flow structures extend further in 
upstream and downstream directions. Jet penetration is found 
to be a linear function of momentum flux, and the separation 
location extends upstream about four times the penetration 
height.    

In [19] the three-dimensional RANS equations and  two 
SST k–ω   equations have been  solved for explore the 
influences of the molecular weight(hydrogen and nitrogen) 
and injector configuration (circular, square, diamond and 
equilateral triangular) on the mean flow field properties in 
the transverse injection strategy  for the wide range of the 
jet-to cross flow pressure ratio (from  4.86 to  25.15) The 
obtained results show that the low pressure ratio can promote 
the mixing process independently on the injectant species 
and the injector configuration. Also the large molecular 
weight of the injectant can improve the mixing process when 
the pressure ratio is fixed.   

A new scheme of the flow field interaction has been also 
obtained with the large eddy simulation LES and the DNS 
technique [14,16-18].  This approaches have brought 
significant contributions toward understanding the evaluation 
of the supersonic flow interaction. The structures of the 
cross-flow jet interaction  have been  identified, where the 
different types of coherent structures are generated during 
the mixing process, shock waves and cross-flow  vortices  
have been illustrated in [11,14,16-18]  .    
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Kawai and Lele [11] have performed the numerical study 
of the supersonic flow with the sonic jet injection. They have 
shown in detail the flow physics of the clockwise and 
counterclockwise rotating strong longitudinal vortices for the 
pressure ratio 5.55 and 8.40. 

In [14] the DNS approach with an adaptive mesh 
refinement technique have been used to investigate the 
Reynolds number effect on the unsteady mixing layer. It has 
been revealed that the Reynolds number plays an  important 
role in the mixing process. 

The supersonic flow with the sonic transverse jet injection 
for the momentum flux ratio 1.7 has been simulated  with the 
LES approach in [16]. One of the main result here is that  the 
Kelvin-Helmholtz instabilities generated the large scale 
eddies on the windward side of the jet shear layer, which 
effect in better mixing of the two fluids. 

The main purpose of Khali  and Yao research [18] was the 
validation of  the hybrid RANS-LES simulation results with  
experimental measurements and the exploration of  its 
further capabilities in predicting the mixing flow phenomena.  
It has been found that the developed  shear layer vortices 
along the interface between the jet and the cross-flow also 
appeared due to the Kelvin-Helmholtz instability for the 
pressure ratio  from 5.55 to 8.40. 
 
 

 
 

 

It is needed to note that the most of  numerical simulations  
of  the jet  interaction with the cross-flow have been 
presented  for low and moderate values of the pressure 
ratio(see, e.g. [5-7,12-13,15,19-20]).   Although the literature 
survey shows that the flow physics depends on the wide 
range of the pressure ratio, which  has significant effect on 
the mixing layer.   For example , the presence of the 
additional vortex structures for the high value pressure ratio 
has been shown by some authors [9,10,21]. These new 
vortices was revealed first by [10] for the pressure ratio 282. 

These additional vortices are illustrated in Fig. 1b where 
the vortical structure, located at a certain distance from the 
jet injection region, entails five pairs of counter-rotating 
vortices in the cross section yz (the plane Ω in Fig. 1a). Two 
pairs of vortices (8) and (6) (Fig. 1b) are formed in the 
mixing region, and one pair of vortices (9) is formed due to 
the interaction of the jet passing through the Mach disk D 
with the high-velocity incoming flow.  The horseshoe vortex 
(7) arises if there is the high pressure gradient ahead of the 
jet as a consequence of the flow separation. Finally, two 
pairs of vortices (10) are formed due to the overflow above 
the barrel structure B in the jet.  

Thus, the physical structure of the flow is not fully 
understood for the wide range value of the pressure ratio 
which plays key role in the mixing of the jet and main flow.   
The aim of the present work is the numerical study and 
detailed analysis of the appearance of new vortical structures 
for the moderate and high pressure ratios. 

 
II. PHYSICAL MODELS AND NUMERICAL METHODS 

 
A. Governing Equations 
Basic equations for the problem are the system of the 

three-dimensional Favre averaged Navier-Stokes equations 
for the compressible turbulent perfect gas in the Cartesian 
coordinate system written in the conservative form as: 
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Fig. 1 the jet injection (a) and the vortex pattern (b) in the 
case of transverse injection of the jet into the freestream. 
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where ( )tklkM µσµ +=
Re
1 , ( )µσµ ωω += lM

Re
1 . 

 
Components of the viscous stress tensor are given as: 
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The heat flux is defined by  
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The vector of additional terms has the following form: 
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ω,k are the turbulent kinetic energy and its dissipation rate, 

kP is the term defining the turbulence generation, the 

turbulent viscosity is determined by the formula 
ω
ρµ k

t =  

[24], and lµ is determined by the Sutherland formula. 
The pressure and the temperature  are given as: 
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In the system (1) vwu ,, represent the components of the 

velocity vector, ρ is the density, vc is the specific heat at 
constant volume, γ  is the ratio of specific heats, ∞M is the 
flow Mach number. 

The system (1) is written in the nondimensional form. The 
input parameters of the main flow ( ∞∞∞ Tρu ,, ) are taken as 

the governing parameters, the pressure and the total energy 
are normalized by ( 2

∞∞uρ ). The injector diameter d is 
chosen as the characteristic length, Pr is the Prandtl number, 
and  ν/Re Lu∞=   is the Reynolds number based on the 
channel length L . 

 
B. Boundary Conditions 
The initial conditions coincide with the boundary 

conditions at the flowfield entrance.  
- at the channel entrance 
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- on the lower wall, 
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At the entrance ω,k  are determined using the Baldwin–
Lomax algebraic model of turbulence on the base of the 
known averaged physical parameters of the free stream. 
Owing to the relation kPk ρωβ ∗=  the initial distribution of 
the turbulent parameters takes the form: 
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The conditions for k and ω on the wall are 
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 here  

1
zΔ - is the distance from the wall to the first node. 

The boundary layer is given near to the wall too, where the 
longitudinal velocity component in the viscous sublayer [21] 
is determined by  
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where 12 0.1δ=δ is the viscous sublayer thickness [25], 
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In the turbulent boundary layer, the 1/7th power law is 
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The profile of temperature and density values are taken as 
[21]. 

The remaining boundary conditions are imposed in the 
following manner: 

- the conditions at the entrance of the  jet are 
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where ∞= PPn /0 is the jet pressure ratio and 0M is the jet 

Mach number. 
The symmetry boundary condition on the upper boundary 

is specified. The conditions on the side boundaries are the 
Neumann conditions for all parameters. The NSCBC-like 
non-reflecting condition is imposed on the output boundary 
[27]. Here xH , zH , and yH are  length, height, and width of 

the computational domain, respectively, and R is the radius 
of the circular orifice. 

 
C. Numerical Schemes 

 
Currently the system of Navier-Stokes equations for 

considered problems are solved with using schemes such as 
MUSCL, TVD, ENO and WENO (weighted ENO) 
[7,13,21,28,29].  The main weakness of monotonic and TVD 
schemes is that in the neighborhood of discontinuities points, 
their approximation order is reduced to the first one. This 
leads to the fact that, for example, a TVD scheme of the 5th 
order of accuracy on smooth monotone solutions for a 
number of test problems does not exceed the TVD scheme of 
order 3 in accuracy. The ENO scheme and the WENO finite-
difference scheme have a sharp, non-oscillatory solution and 
the order of approximation is higher than one near 
discontinuities. The third-order approximation scheme for 
solving the averaged Navier-Stokes equations based on the 
ENO scheme has been constructed in [7,13]. The technique 
has been applied to simulation of the plane supersonic flow 
with jet injection. In this works it has been shown that the 
algorithm simulates supersonic flows with jet injection with 
the sufficient order of the accuracy. To solve this problem, 
the ENO scheme is generalized to the three-dimensional 
case. In accordance with this, preliminary in the boundary 
layer, near the wall and at the level of the jet, in order to 
more accurately solution for the flow, grid thickening is 
introduced by means of transformations [13]: 
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Jacobian. 
Following the principle of ENO scheme construction, the 

initial system of equations is written in the form: 
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initial convective vectors ( E~ ) and additional high-order 
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After factorization of the single-step finite-difference 

scheme, we obtain the equality for integrating Eq. (3) with 
respect to time: 
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The central differences of the second order of accuracy 

have been used for the approximation of the diffusion terms. 
For the approximation of the terms containing high-order 
vectors the following expression is used: 
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System (4) is solved by the method of splitting with 

respect to the vector U~  using matrix sweep. 
 

III. RESULTS AND DISCUSSION 
 

The calculations are performed on the 251x121x151 
staggered grid with the steps over the spatial coordinates. We 
studied the interaction of the supersonic flow with the 

4∞ =M , ,72.0Pr = 610*87.1Re =  parameters with the 
sonic jet of the perfect gas injected from the orifice with the 
diameter cmd 476,0=  and the pressure ratio in the range of 

001≤≤10 n . The size of the domain is: 52=
x

H 32=
y

H , 

24=
z

H
 
and the jet center is located at the point with the 

coordinates 16
0

=x , 16
0

=y . The boundary layer thickness is 

taken at the entrance 651
1

,=δ   and  the entire boundary layer 
is resolved with the use of 22-26 nodes. In [21] the 
applicability of the ENO scheme to solve the problem of the 
spatial supersonic flow in the channel with injection of 
perpendicular jets for moderate jet pressure ratio has been 
demonstrated. On the base of the constructed code Nav3D 
the detailed analysis of the convergence of the numerical 
solution is given.  

Fig. 2-7 demonstrates the results of the numerical 
simulation for the pressure ratio 100=n . From Fig. 2a it is 
visible that two oppositely rotating vortices (4) and (5) are 
formed ahead the jet for the flows with the high pressure 
ratio. They appeared as the result of the detachment of the 
incoming flow caused by the λ- shaped system of the shock 
waves. This system of the shock waves is illustrated well on 
the field of the local Mach number and the pressure 
distribution (Fig. 2b,c). Fig. 2c shows the λ-shaped system of 
the shock waves (bow, separation and closing shock waves).  

The pair of vortices (8), generated by the vortex (5), as the 
result of its lateral overflow, is shown in Fig. 3. And, as 
follows from the numerical experiments, the size of this pair 
of vortices is increased downstream.  For example, the 
maximum size of the side vortices is observed in the 
section 6117.x= . Apparently, the increase of the size of these 
vortices is primarily caused by the fact that they are 
concentrated near to the wall, and enlargement of the 
boundary layer thickness gives the growth to this pair. While 
moving downstream it loses its intensity and as the result it's 
not visible in sections from 3320.x=  up to 6421.x= . Such 
behavior has been obtained in [21] for the flow with the 
moderate pressure ratio.  

INTERNATIONAL JOURNAL OF MECHANICS Volume 12, 2018 

ISSN: 1998-4448 92



 
 
 
Fig. 4 demonstrates the appearance of the vortex pair (9), 

which is formed behind the Mach disk due to the interaction 
of the jet with the rising flow under the jet.  Here, the vortex 
trace (6) is also observed near to the wall in the low-pressure 
region. The presence of these vortex pairs and the 
mechanisms of their formation have been represented in [21] 
for the cross-flow with the moderate pressure ratio. Their 
presence has been shown in [12] for the high ratio too. The 
numerical experiments reveal that the above-described 
vortex system is sufficiently stable for the large range 
regimes of ∞/PP0 . 

The reinforced vortex (8) is visible in the pair with the 
vortex (9) (Fig. 5 in the section 9821.x= ).   It can be seen 
from this figure that here, the size of the vortex (6) has 
increased significantly. 

Then the vortex (9) is captured by the vortex (8) (Fig. 6). 
The vortex (10) appears due to the interaction of the jet with 
the high-velocity flow passing above the injected jet (Fig. 6). 
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Fig. 4 streamlines (a) and vorticity magnitude (b)  
in the plane zy (x=21.02)  
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Fig. 2 streamlines (a), mach number (b) and pressure 
distribution (c) in the plane of symmetry (y=16). 
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Fig. 3 streamlines (a) and vorticity magnitude (b)  
in the plane yz (x=17.61)  
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Then the vortex (9) is captured by the vortex (8) (Fig. 6). 
The vortex (10) appears due to the interaction of the jet with 
the high-velocity flow passing above the injected jet (Fig. 6).  
This vortex has been numerically evidenced firstly in [10] 
and also in [21].  

The pattern of appearance of the vortex  (11) is also shown 
in  Fig. 6. This vortex formed as the result of the fact that the 
jet attaches to the surface of the wall [21]. Thus, the 
assumption that has been put forward in [1] is confirmed 
here.  A namely, between the jet and the region of its 
attaching to the wall, there is something like a cavity where 
two counter-rotating vortices may appear. As follows from 
the Fig.6, the direction of its rotation coincides with the 
direction of rotation of the track (6). 

Fig. 7 shows the vortices (12) that are localized near to the 
wall in the region behind the jet on the distance from the 
nozzle (at a section 218.x= ). The physical mechanism of 
their origin is that the jet, flowing directly from the nozzle, 
collides with the external flow that tends to get closer to the 
symmetry line, which leads to the interaction of the 
counterflows and their twisting in the form of two horns like 
structures.  

The numerical simulation performed for the range of the 
pressure ratio  10010 ≤≤n shows  that the behavior of the 
vortex structure changes with the increase of the parameter n. 
Thus, at 10=n  , vortices (6), (8) , (9) and (12)  are formed in 
the region behind the jet, while the vortex structures (10) and 
(11) are not been watched, which is possibly caused by that 
the cross-flow mixing intensity for the smaller pressure ratio 
is insufficient for the appearance of vortices (10) and (11). It 
is confirmed that starting with parameter 20=n , these 
vortices are already  identified. 

 Below, the comparison of the numerical result with the 
experimental data [1] is performed for the jet to cross-flow 
with the pressure ratio 40=n  and the flow 

parameters 710871 *.Re= , 90.=Pr , 3
∞

=M , the diameter of 

the nozzle cm.d 41= .  Fig. 8 shows the pressure distribution 

∞
P/P on the wall in the plane of symmetry (the solid curve 

shows the computed result and «°°°°» – experimental result 
[1]). The origin of the chosen coordinate system coincides 
with the center of the orifice; the abscissa axis shows the 
values of 11 )5.0( LdXX −−= , where 

1
L is the distance from 

the jet tip to the beginning of the region of the pressure 
increase. It is seen in Fig. 8 that the braking of the flow 
ahead of the jet leads to the increase in pressure, and regions 
with the different pressure gradients are formed. It is also 
seen in Fig. 8 that numerical and experimental results are in 
reasonable agreement. 
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Fig. 6 streamlines (a) and vorticity magnitude (b) 
 in the plane zy (x=29.66)  
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Fig. 5 streamlines (a) and vorticity magnitude (b)  
in the plane zy (x=21.98)  
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Fig. 7 streamlines in the plane xy (z=0.09)  
 

 

 
Fig. 8 pressure distribution on the wall on the plane of symmetry 
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